Die Gefahr lauert im Stadtverkehr an und hinter jeder Ecke. Mercedes-Assistenzsysteme, übernehmen Sie! . Auf dem Weg zu noch sicherem Fahren in der Stadt ist den Forschern der Daimler AG im Rahmen der Forschungsinitiative UR:BAN ein Durchbruch gelungen. Mit dem so genannten „Szenen-Labeling“ klassifiziert das kamerabasierte System völlig unbekannte Situationen automatisch und detektiert so alle für die Fahrerassistenz wichtigen Objekte – vom Radler über den Fußgänger bis zum Rollstuhlfahrer. Forscher der Abteilung „Umgebungserfassung“ haben ihrem System gezielt tausende Bilder verschiedener deutscher Städte gezeigt, in denen sie manuell 25 verschiedene Objektklassen wie Fahrzeuge, Radfahrer, Fußgänger, Straße, Gehsteig, Gebäude, Pfosten oder Bäume präzise „gelabelt“ hatten. Anhand dieser Beispiele hat das System gelernt, völlig unbekannte Bilder automatisch korrekt zu klassifizieren und so alle für die Fahrerassistenz wichtigen Objekte auch bei starker Verdeckung und in großen Entfernungen zu detektieren. Möglich machen dies leistungsstarke Rechner, die ähnlich dem menschlichen Gehirn künstlich neuronal vernetzt sind, sogenannte Deep Neural Networks.
Damit funktioniert das System vergleichbar mit dem menschlichen Sehen. Auch das basiert auf einem sehr komplexen neuronalen System, das die Informationen der einzelnen Sinneszellen auf der Netzhaut so lange verknüpft, bis der Mensch eine nahezu unbegrenzte Anzahl von Objekten erkennen und unterscheiden kann. Mit dem Szenen-Labeling wird die Kamera vom reinen Messsystem zu einem verstehenden System, so vielseitig wie das Zusammenspiel von Auge und Gehirn. Prof. Ralf Guido Herrtwich, Leiter Fahrerassistenz- und Fahrwerksysteme, Konzernforschung und Vorentwicklung der Daimler AG: „Durch die in den letzten Jahren enorm gestiegene Rechnerleistung rückt der Tag näher, an dem Fahrzeuge ihre Umgebung so sehen wie der Mensch und auch komplexe Situationen in der Stadt richtig verstehen.“ Um schnell voran zu kommen forscht Daimler gemeinsam mit Partnern weiterhin aktiv im Sinne der Vision vom unfallfreien Fahren.
Keine Kommentare
Schreibe einen Kommentar